include/boost/corosio/native/detail/select/select_scheduler.hpp

72.7% Lines (261/359) 81.8% Functions (27/33)
include/boost/corosio/native/detail/select/select_scheduler.hpp
Line Hits Source Code
1 //
2 // Copyright (c) 2026 Steve Gerbino
3 //
4 // Distributed under the Boost Software License, Version 1.0. (See accompanying
5 // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6 //
7 // Official repository: https://github.com/cppalliance/corosio
8 //
9
10 #ifndef BOOST_COROSIO_NATIVE_DETAIL_SELECT_SELECT_SCHEDULER_HPP
11 #define BOOST_COROSIO_NATIVE_DETAIL_SELECT_SELECT_SCHEDULER_HPP
12
13 #include <boost/corosio/detail/platform.hpp>
14
15 #if BOOST_COROSIO_HAS_SELECT
16
17 #include <boost/corosio/detail/config.hpp>
18 #include <boost/capy/ex/execution_context.hpp>
19
20 #include <boost/corosio/native/native_scheduler.hpp>
21 #include <boost/corosio/detail/scheduler_op.hpp>
22
23 #include <boost/corosio/native/detail/select/select_op.hpp>
24 #include <boost/corosio/detail/timer_service.hpp>
25 #include <boost/corosio/detail/make_err.hpp>
26 #include <boost/corosio/native/detail/posix/posix_resolver_service.hpp>
27 #include <boost/corosio/native/detail/posix/posix_signal_service.hpp>
28
29 #include <boost/corosio/detail/except.hpp>
30 #include <boost/corosio/detail/thread_local_ptr.hpp>
31
32 #include <sys/select.h>
33 #include <sys/socket.h>
34 #include <unistd.h>
35 #include <errno.h>
36 #include <fcntl.h>
37
38 #include <algorithm>
39 #include <atomic>
40 #include <chrono>
41 #include <condition_variable>
42 #include <cstddef>
43 #include <limits>
44 #include <mutex>
45 #include <unordered_map>
46
47 namespace boost::corosio::detail {
48
49 struct select_op;
50
51 /** POSIX scheduler using select() for I/O multiplexing.
52
53 This scheduler implements the scheduler interface using the POSIX select()
54 call for I/O event notification. It uses a single reactor model
55 where one thread runs select() while other threads wait on a condition
56 variable for handler work. This design provides:
57
58 - Handler parallelism: N posted handlers can execute on N threads
59 - No thundering herd: condition_variable wakes exactly one thread
60 - Portability: Works on all POSIX systems
61
62 The design mirrors epoll_scheduler for behavioral consistency:
63 - Same single-reactor thread coordination model
64 - Same work counting semantics
65 - Same timer integration pattern
66
67 Known Limitations:
68 - FD_SETSIZE (~1024) limits maximum concurrent connections
69 - O(n) scanning: rebuilds fd_sets each iteration
70 - Level-triggered only (no edge-triggered mode)
71
72 @par Thread Safety
73 All public member functions are thread-safe.
74 */
75 class BOOST_COROSIO_DECL select_scheduler final
76 : public native_scheduler
77 , public capy::execution_context::service
78 {
79 public:
80 using key_type = scheduler;
81
82 /** Construct the scheduler.
83
84 Creates a self-pipe for reactor interruption.
85
86 @param ctx Reference to the owning execution_context.
87 @param concurrency_hint Hint for expected thread count (unused).
88 */
89 select_scheduler(capy::execution_context& ctx, int concurrency_hint = -1);
90
91 ~select_scheduler() override;
92
93 select_scheduler(select_scheduler const&) = delete;
94 select_scheduler& operator=(select_scheduler const&) = delete;
95
96 void shutdown() override;
97 void post(std::coroutine_handle<> h) const override;
98 void post(scheduler_op* h) const override;
99 bool running_in_this_thread() const noexcept override;
100 void stop() override;
101 bool stopped() const noexcept override;
102 void restart() override;
103 std::size_t run() override;
104 std::size_t run_one() override;
105 std::size_t wait_one(long usec) override;
106 std::size_t poll() override;
107 std::size_t poll_one() override;
108
109 /** Return the maximum file descriptor value supported.
110
111 Returns FD_SETSIZE - 1, the maximum fd value that can be
112 monitored by select(). Operations with fd >= FD_SETSIZE
113 will fail with EINVAL.
114
115 @return The maximum supported file descriptor value.
116 */
117 static constexpr int max_fd() noexcept
118 {
119 return FD_SETSIZE - 1;
120 }
121
122 /** Register a file descriptor for monitoring.
123
124 @param fd The file descriptor to register.
125 @param op The operation associated with this fd.
126 @param events Event mask: 1 = read, 2 = write, 3 = both.
127 */
128 void register_fd(int fd, select_op* op, int events) const;
129
130 /** Unregister a file descriptor from monitoring.
131
132 @param fd The file descriptor to unregister.
133 @param events Event mask to remove: 1 = read, 2 = write, 3 = both.
134 */
135 void deregister_fd(int fd, int events) const;
136
137 void work_started() noexcept override;
138 void work_finished() noexcept override;
139
140 // Event flags for register_fd/deregister_fd
141 static constexpr int event_read = 1;
142 static constexpr int event_write = 2;
143
144 private:
145 std::size_t do_one(long timeout_us);
146 void run_reactor(std::unique_lock<std::mutex>& lock);
147 void wake_one_thread_and_unlock(std::unique_lock<std::mutex>& lock) const;
148 void interrupt_reactor() const;
149 long calculate_timeout(long requested_timeout_us) const;
150
151 // Self-pipe for interrupting select()
152 int pipe_fds_[2]; // [0]=read, [1]=write
153
154 mutable std::mutex mutex_;
155 mutable std::condition_variable wakeup_event_;
156 mutable op_queue completed_ops_;
157 mutable std::atomic<long> outstanding_work_;
158 std::atomic<bool> stopped_;
159 bool shutdown_;
160
161 // Per-fd state for tracking registered operations
162 struct fd_state
163 {
164 select_op* read_op = nullptr;
165 select_op* write_op = nullptr;
166 };
167 mutable std::unordered_map<int, fd_state> registered_fds_;
168 mutable int max_fd_ = -1;
169
170 // Single reactor thread coordination
171 mutable bool reactor_running_ = false;
172 mutable bool reactor_interrupted_ = false;
173 mutable int idle_thread_count_ = 0;
174
175 // Sentinel operation for interleaving reactor runs with handler execution.
176 // Ensures the reactor runs periodically even when handlers are continuously
177 // posted, preventing timer starvation.
178 struct task_op final : scheduler_op
179 {
180 void operator()() override {}
181 void destroy() override {}
182 };
183 task_op task_op_;
184 };
185
186 /*
187 select Scheduler - Single Reactor Model
188 =======================================
189
190 This scheduler mirrors the epoll_scheduler design but uses select() instead
191 of epoll for I/O multiplexing. The thread coordination strategy is identical:
192 one thread becomes the "reactor" while others wait on a condition variable.
193
194 Thread Model
195 ------------
196 - ONE thread runs select() at a time (the reactor thread)
197 - OTHER threads wait on wakeup_event_ (condition variable) for handlers
198 - When work is posted, exactly one waiting thread wakes via notify_one()
199
200 Key Differences from epoll
201 --------------------------
202 - Uses self-pipe instead of eventfd for interruption (more portable)
203 - fd_set rebuilding each iteration (O(n) vs O(1) for epoll)
204 - FD_SETSIZE limit (~1024 fds on most systems)
205 - Level-triggered only (no edge-triggered mode)
206
207 Self-Pipe Pattern
208 -----------------
209 To interrupt a blocking select() call (e.g., when work is posted or a timer
210 expires), we write a byte to pipe_fds_[1]. The read end pipe_fds_[0] is
211 always in the read_fds set, so select() returns immediately. We drain the
212 pipe to clear the readable state.
213
214 fd-to-op Mapping
215 ----------------
216 We use an unordered_map<int, fd_state> to track which operations are
217 registered for each fd. This allows O(1) lookup when select() returns
218 ready fds. Each fd can have at most one read op and one write op registered.
219 */
220
221 namespace select {
222
223 struct BOOST_COROSIO_SYMBOL_VISIBLE scheduler_context
224 {
225 select_scheduler const* key;
226 scheduler_context* next;
227 };
228
229 inline thread_local_ptr<scheduler_context> context_stack;
230
231 struct thread_context_guard
232 {
233 scheduler_context frame_;
234
235 124 explicit thread_context_guard(select_scheduler const* ctx) noexcept
236 124 : frame_{ctx, context_stack.get()}
237 {
238 124 context_stack.set(&frame_);
239 124 }
240
241 124 ~thread_context_guard() noexcept
242 {
243 124 context_stack.set(frame_.next);
244 124 }
245 };
246
247 struct work_guard
248 {
249 select_scheduler* self;
250 228359 ~work_guard()
251 {
252 228359 self->work_finished();
253 228359 }
254 };
255
256 } // namespace select
257
258 135 inline select_scheduler::select_scheduler(capy::execution_context& ctx, int)
259 135 : pipe_fds_{-1, -1}
260 135 , outstanding_work_(0)
261 135 , stopped_(false)
262 135 , shutdown_(false)
263 135 , max_fd_(-1)
264 135 , reactor_running_(false)
265 135 , reactor_interrupted_(false)
266 270 , idle_thread_count_(0)
267 {
268 // Create self-pipe for interrupting select()
269 135 if (::pipe(pipe_fds_) < 0)
270 detail::throw_system_error(make_err(errno), "pipe");
271
272 // Set both ends to non-blocking and close-on-exec
273 405 for (int i = 0; i < 2; ++i)
274 {
275 270 int flags = ::fcntl(pipe_fds_[i], F_GETFL, 0);
276 270 if (flags == -1)
277 {
278 int errn = errno;
279 ::close(pipe_fds_[0]);
280 ::close(pipe_fds_[1]);
281 detail::throw_system_error(make_err(errn), "fcntl F_GETFL");
282 }
283 270 if (::fcntl(pipe_fds_[i], F_SETFL, flags | O_NONBLOCK) == -1)
284 {
285 int errn = errno;
286 ::close(pipe_fds_[0]);
287 ::close(pipe_fds_[1]);
288 detail::throw_system_error(make_err(errn), "fcntl F_SETFL");
289 }
290 270 if (::fcntl(pipe_fds_[i], F_SETFD, FD_CLOEXEC) == -1)
291 {
292 int errn = errno;
293 ::close(pipe_fds_[0]);
294 ::close(pipe_fds_[1]);
295 detail::throw_system_error(make_err(errn), "fcntl F_SETFD");
296 }
297 }
298
299 135 timer_svc_ = &get_timer_service(ctx, *this);
300 135 timer_svc_->set_on_earliest_changed(
301 3555 timer_service::callback(this, [](void* p) {
302 3420 static_cast<select_scheduler*>(p)->interrupt_reactor();
303 3420 }));
304
305 // Initialize resolver service
306 135 get_resolver_service(ctx, *this);
307
308 // Initialize signal service
309 135 get_signal_service(ctx, *this);
310
311 // Push task sentinel to interleave reactor runs with handler execution
312 135 completed_ops_.push(&task_op_);
313 135 }
314
315 270 inline select_scheduler::~select_scheduler()
316 {
317 135 if (pipe_fds_[0] >= 0)
318 135 ::close(pipe_fds_[0]);
319 135 if (pipe_fds_[1] >= 0)
320 135 ::close(pipe_fds_[1]);
321 270 }
322
323 inline void
324 135 select_scheduler::shutdown()
325 {
326 {
327 135 std::unique_lock lock(mutex_);
328 135 shutdown_ = true;
329
330 270 while (auto* h = completed_ops_.pop())
331 {
332 135 if (h == &task_op_)
333 135 continue;
334 lock.unlock();
335 h->destroy();
336 lock.lock();
337 135 }
338 135 }
339
340 135 outstanding_work_.store(0, std::memory_order_release);
341
342 135 if (pipe_fds_[1] >= 0)
343 135 interrupt_reactor();
344
345 135 wakeup_event_.notify_all();
346 135 }
347
348 inline void
349 3767 select_scheduler::post(std::coroutine_handle<> h) const
350 {
351 struct post_handler final : scheduler_op
352 {
353 std::coroutine_handle<> h_;
354
355 3767 explicit post_handler(std::coroutine_handle<> h) : h_(h) {}
356
357 7534 ~post_handler() override = default;
358
359 3767 void operator()() override
360 {
361 3767 auto h = h_;
362 3767 delete this;
363 3767 h.resume();
364 3767 }
365
366 void destroy() override
367 {
368 delete this;
369 }
370 };
371
372 3767 auto ph = std::make_unique<post_handler>(h);
373 3767 outstanding_work_.fetch_add(1, std::memory_order_relaxed);
374
375 3767 std::unique_lock lock(mutex_);
376 3767 completed_ops_.push(ph.release());
377 3767 wake_one_thread_and_unlock(lock);
378 3767 }
379
380 inline void
381 218056 select_scheduler::post(scheduler_op* h) const
382 {
383 218056 outstanding_work_.fetch_add(1, std::memory_order_relaxed);
384
385 218056 std::unique_lock lock(mutex_);
386 218056 completed_ops_.push(h);
387 218056 wake_one_thread_and_unlock(lock);
388 218056 }
389
390 inline bool
391 559 select_scheduler::running_in_this_thread() const noexcept
392 {
393 559 for (auto* c = select::context_stack.get(); c != nullptr; c = c->next)
394 369 if (c->key == this)
395 369 return true;
396 190 return false;
397 }
398
399 inline void
400 103 select_scheduler::stop()
401 {
402 103 bool expected = false;
403 103 if (stopped_.compare_exchange_strong(
404 expected, true, std::memory_order_release,
405 std::memory_order_relaxed))
406 {
407 // Wake all threads so they notice stopped_ and exit
408 {
409 103 std::lock_guard lock(mutex_);
410 103 wakeup_event_.notify_all();
411 103 }
412 103 interrupt_reactor();
413 }
414 103 }
415
416 inline bool
417 3 select_scheduler::stopped() const noexcept
418 {
419 3 return stopped_.load(std::memory_order_acquire);
420 }
421
422 inline void
423 37 select_scheduler::restart()
424 {
425 37 stopped_.store(false, std::memory_order_release);
426 37 }
427
428 inline std::size_t
429 100 select_scheduler::run()
430 {
431 100 if (stopped_.load(std::memory_order_acquire))
432 return 0;
433
434 200 if (outstanding_work_.load(std::memory_order_acquire) == 0)
435 {
436 stop();
437 return 0;
438 }
439
440 100 select::thread_context_guard ctx(this);
441
442 100 std::size_t n = 0;
443 228435 while (do_one(-1))
444 228335 if (n != (std::numeric_limits<std::size_t>::max)())
445 228335 ++n;
446 100 return n;
447 100 }
448
449 inline std::size_t
450 select_scheduler::run_one()
451 {
452 if (stopped_.load(std::memory_order_acquire))
453 return 0;
454
455 if (outstanding_work_.load(std::memory_order_acquire) == 0)
456 {
457 stop();
458 return 0;
459 }
460
461 select::thread_context_guard ctx(this);
462 return do_one(-1);
463 }
464
465 inline std::size_t
466 27 select_scheduler::wait_one(long usec)
467 {
468 27 if (stopped_.load(std::memory_order_acquire))
469 3 return 0;
470
471 48 if (outstanding_work_.load(std::memory_order_acquire) == 0)
472 {
473 stop();
474 return 0;
475 }
476
477 24 select::thread_context_guard ctx(this);
478 24 return do_one(usec);
479 24 }
480
481 inline std::size_t
482 select_scheduler::poll()
483 {
484 if (stopped_.load(std::memory_order_acquire))
485 return 0;
486
487 if (outstanding_work_.load(std::memory_order_acquire) == 0)
488 {
489 stop();
490 return 0;
491 }
492
493 select::thread_context_guard ctx(this);
494
495 std::size_t n = 0;
496 while (do_one(0))
497 if (n != (std::numeric_limits<std::size_t>::max)())
498 ++n;
499 return n;
500 }
501
502 inline std::size_t
503 select_scheduler::poll_one()
504 {
505 if (stopped_.load(std::memory_order_acquire))
506 return 0;
507
508 if (outstanding_work_.load(std::memory_order_acquire) == 0)
509 {
510 stop();
511 return 0;
512 }
513
514 select::thread_context_guard ctx(this);
515 return do_one(0);
516 }
517
518 inline void
519 6699 select_scheduler::register_fd(int fd, select_op* op, int events) const
520 {
521 // Validate fd is within select() limits
522 6699 if (fd < 0 || fd >= FD_SETSIZE)
523 detail::throw_system_error(make_err(EINVAL), "select: fd out of range");
524
525 {
526 6699 std::lock_guard lock(mutex_);
527
528 6699 auto& state = registered_fds_[fd];
529 6699 if (events & event_read)
530 3491 state.read_op = op;
531 6699 if (events & event_write)
532 3208 state.write_op = op;
533
534 6699 if (fd > max_fd_)
535 232 max_fd_ = fd;
536 6699 }
537
538 // Wake the reactor so a thread blocked in select() rebuilds its fd_sets
539 // with the newly registered fd.
540 6699 interrupt_reactor();
541 6699 }
542
543 inline void
544 6633 select_scheduler::deregister_fd(int fd, int events) const
545 {
546 6633 std::lock_guard lock(mutex_);
547
548 6633 auto it = registered_fds_.find(fd);
549 6633 if (it == registered_fds_.end())
550 6470 return;
551
552 163 if (events & event_read)
553 163 it->second.read_op = nullptr;
554 163 if (events & event_write)
555 it->second.write_op = nullptr;
556
557 // Remove entry if both are null
558 163 if (!it->second.read_op && !it->second.write_op)
559 {
560 163 registered_fds_.erase(it);
561
562 // Recalculate max_fd_ if needed
563 163 if (fd == max_fd_)
564 {
565 162 max_fd_ = pipe_fds_[0]; // At minimum, the pipe read end
566 162 for (auto& [registered_fd, state] : registered_fds_)
567 {
568 if (registered_fd > max_fd_)
569 max_fd_ = registered_fd;
570 }
571 }
572 }
573 6633 }
574
575 inline void
576 10701 select_scheduler::work_started() noexcept
577 {
578 10701 outstanding_work_.fetch_add(1, std::memory_order_relaxed);
579 10701 }
580
581 inline void
582 232524 select_scheduler::work_finished() noexcept
583 {
584 465048 if (outstanding_work_.fetch_sub(1, std::memory_order_acq_rel) == 1)
585 103 stop();
586 232524 }
587
588 inline void
589 13768 select_scheduler::interrupt_reactor() const
590 {
591 13768 char byte = 1;
592 13768 [[maybe_unused]] auto r = ::write(pipe_fds_[1], &byte, 1);
593 13768 }
594
595 inline void
596 221823 select_scheduler::wake_one_thread_and_unlock(
597 std::unique_lock<std::mutex>& lock) const
598 {
599 221823 if (idle_thread_count_ > 0)
600 {
601 // Idle worker exists - wake it via condvar
602 wakeup_event_.notify_one();
603 lock.unlock();
604 }
605 221823 else if (reactor_running_ && !reactor_interrupted_)
606 {
607 // No idle workers but reactor is running - interrupt it
608 3411 reactor_interrupted_ = true;
609 3411 lock.unlock();
610 3411 interrupt_reactor();
611 }
612 else
613 {
614 // No one to wake
615 218412 lock.unlock();
616 }
617 221823 }
618
619 inline long
620 9789 select_scheduler::calculate_timeout(long requested_timeout_us) const
621 {
622 9789 if (requested_timeout_us == 0)
623 return 0;
624
625 9789 auto nearest = timer_svc_->nearest_expiry();
626 9789 if (nearest == timer_service::time_point::max())
627 37 return requested_timeout_us;
628
629 9752 auto now = std::chrono::steady_clock::now();
630 9752 if (nearest <= now)
631 160 return 0;
632
633 auto timer_timeout_us =
634 9592 std::chrono::duration_cast<std::chrono::microseconds>(nearest - now)
635 9592 .count();
636
637 // Clamp to [0, LONG_MAX] to prevent truncation on 32-bit long platforms
638 9592 constexpr auto long_max =
639 static_cast<long long>((std::numeric_limits<long>::max)());
640 auto capped_timer_us =
641 9592 (std::min)((std::max)(static_cast<long long>(timer_timeout_us),
642 9592 static_cast<long long>(0)),
643 9592 long_max);
644
645 9592 if (requested_timeout_us < 0)
646 9592 return static_cast<long>(capped_timer_us);
647
648 // requested_timeout_us is already long, so min() result fits in long
649 return static_cast<long>(
650 (std::min)(static_cast<long long>(requested_timeout_us),
651 capped_timer_us));
652 }
653
654 inline void
655 124876 select_scheduler::run_reactor(std::unique_lock<std::mutex>& lock)
656 {
657 // Calculate timeout considering timers, use 0 if interrupted
658 long effective_timeout_us =
659 124876 reactor_interrupted_ ? 0 : calculate_timeout(-1);
660
661 // Build fd_sets from registered_fds_
662 fd_set read_fds, write_fds, except_fds;
663 2122892 FD_ZERO(&read_fds);
664 2122892 FD_ZERO(&write_fds);
665 2122892 FD_ZERO(&except_fds);
666
667 // Always include the interrupt pipe
668 124876 FD_SET(pipe_fds_[0], &read_fds);
669 124876 int nfds = pipe_fds_[0];
670
671 // Add registered fds
672 140812 for (auto& [fd, state] : registered_fds_)
673 {
674 15936 if (state.read_op)
675 12728 FD_SET(fd, &read_fds);
676 15936 if (state.write_op)
677 {
678 3208 FD_SET(fd, &write_fds);
679 // Also monitor for errors on connect operations
680 3208 FD_SET(fd, &except_fds);
681 }
682 15936 if (fd > nfds)
683 12731 nfds = fd;
684 }
685
686 // Convert timeout to timeval
687 struct timeval tv;
688 124876 struct timeval* tv_ptr = nullptr;
689 124876 if (effective_timeout_us >= 0)
690 {
691 124839 tv.tv_sec = effective_timeout_us / 1000000;
692 124839 tv.tv_usec = effective_timeout_us % 1000000;
693 124839 tv_ptr = &tv;
694 }
695
696 124876 lock.unlock();
697
698 124876 int ready = ::select(nfds + 1, &read_fds, &write_fds, &except_fds, tv_ptr);
699 124876 int saved_errno = errno;
700
701 // Process timers outside the lock
702 124876 timer_svc_->process_expired();
703
704 124876 if (ready < 0 && saved_errno != EINTR)
705 detail::throw_system_error(make_err(saved_errno), "select");
706
707 // Re-acquire lock before modifying completed_ops_
708 124876 lock.lock();
709
710 // Drain the interrupt pipe if readable
711 124876 if (ready > 0 && FD_ISSET(pipe_fds_[0], &read_fds))
712 {
713 char buf[256];
714 20306 while (::read(pipe_fds_[0], buf, sizeof(buf)) > 0)
715 {
716 }
717 }
718
719 // Process I/O completions
720 124876 int completions_queued = 0;
721 124876 if (ready > 0)
722 {
723 // Iterate over registered fds (copy keys to avoid iterator invalidation)
724 10153 std::vector<int> fds_to_check;
725 10153 fds_to_check.reserve(registered_fds_.size());
726 22918 for (auto& [fd, state] : registered_fds_)
727 12765 fds_to_check.push_back(fd);
728
729 22918 for (int fd : fds_to_check)
730 {
731 12765 auto it = registered_fds_.find(fd);
732 12765 if (it == registered_fds_.end())
733 continue;
734
735 12765 auto& state = it->second;
736
737 // Check for errors (especially for connect operations)
738 12765 bool has_error = FD_ISSET(fd, &except_fds);
739
740 // Process read readiness
741 12765 if (state.read_op && (FD_ISSET(fd, &read_fds) || has_error))
742 {
743 3328 auto* op = state.read_op;
744 // Claim the op by exchanging to unregistered. Both registering and
745 // registered states mean the op is ours to complete.
746 3328 auto prev = op->registered.exchange(
747 select_registration_state::unregistered,
748 std::memory_order_acq_rel);
749 3328 if (prev != select_registration_state::unregistered)
750 {
751 3328 state.read_op = nullptr;
752
753 3328 if (has_error)
754 {
755 int errn = 0;
756 socklen_t len = sizeof(errn);
757 if (::getsockopt(
758 fd, SOL_SOCKET, SO_ERROR, &errn, &len) < 0)
759 errn = errno;
760 if (errn == 0)
761 errn = EIO;
762 op->complete(errn, 0);
763 }
764 else
765 {
766 3328 op->perform_io();
767 }
768
769 3328 completed_ops_.push(op);
770 3328 ++completions_queued;
771 }
772 }
773
774 // Process write readiness
775 12765 if (state.write_op && (FD_ISSET(fd, &write_fds) || has_error))
776 {
777 3208 auto* op = state.write_op;
778 // Claim the op by exchanging to unregistered. Both registering and
779 // registered states mean the op is ours to complete.
780 3208 auto prev = op->registered.exchange(
781 select_registration_state::unregistered,
782 std::memory_order_acq_rel);
783 3208 if (prev != select_registration_state::unregistered)
784 {
785 3208 state.write_op = nullptr;
786
787 3208 if (has_error)
788 {
789 int errn = 0;
790 socklen_t len = sizeof(errn);
791 if (::getsockopt(
792 fd, SOL_SOCKET, SO_ERROR, &errn, &len) < 0)
793 errn = errno;
794 if (errn == 0)
795 errn = EIO;
796 op->complete(errn, 0);
797 }
798 else
799 {
800 3208 op->perform_io();
801 }
802
803 3208 completed_ops_.push(op);
804 3208 ++completions_queued;
805 }
806 }
807
808 // Clean up empty entries
809 12765 if (!state.read_op && !state.write_op)
810 6536 registered_fds_.erase(it);
811 }
812 10153 }
813
814 124876 if (completions_queued > 0)
815 {
816 3331 if (completions_queued == 1)
817 126 wakeup_event_.notify_one();
818 else
819 3205 wakeup_event_.notify_all();
820 }
821 124876 }
822
823 inline std::size_t
824 228459 select_scheduler::do_one(long timeout_us)
825 {
826 228459 std::unique_lock lock(mutex_);
827
828 for (;;)
829 {
830 353335 if (stopped_.load(std::memory_order_acquire))
831 100 return 0;
832
833 353235 scheduler_op* op = completed_ops_.pop();
834
835 353235 if (op == &task_op_)
836 {
837 124876 bool more_handlers = !completed_ops_.empty();
838
839 124876 if (!more_handlers)
840 {
841 19578 if (outstanding_work_.load(std::memory_order_acquire) == 0)
842 {
843 completed_ops_.push(&task_op_);
844 return 0;
845 }
846 9789 if (timeout_us == 0)
847 {
848 completed_ops_.push(&task_op_);
849 return 0;
850 }
851 }
852
853 124876 reactor_interrupted_ = more_handlers || timeout_us == 0;
854 124876 reactor_running_ = true;
855
856 124876 if (more_handlers && idle_thread_count_ > 0)
857 wakeup_event_.notify_one();
858
859 124876 run_reactor(lock);
860
861 124876 reactor_running_ = false;
862 124876 completed_ops_.push(&task_op_);
863 124876 continue;
864 124876 }
865
866 228359 if (op != nullptr)
867 {
868 228359 lock.unlock();
869 228359 select::work_guard g{this};
870 228359 (*op)();
871 228359 return 1;
872 228359 }
873
874 if (outstanding_work_.load(std::memory_order_acquire) == 0)
875 return 0;
876
877 if (timeout_us == 0)
878 return 0;
879
880 ++idle_thread_count_;
881 if (timeout_us < 0)
882 wakeup_event_.wait(lock);
883 else
884 wakeup_event_.wait_for(lock, std::chrono::microseconds(timeout_us));
885 --idle_thread_count_;
886 124876 }
887 228459 }
888
889 } // namespace boost::corosio::detail
890
891 #endif // BOOST_COROSIO_HAS_SELECT
892
893 #endif // BOOST_COROSIO_NATIVE_DETAIL_SELECT_SELECT_SCHEDULER_HPP
894